Please turn over and read the instructions!

1) Consider the hyperboloid of one sheet H given by the equation

$$
x^{2}+\frac{y^{2}}{9}-\frac{z^{2}}{4}=2
$$

(8) a) Treating H as a level surface of a function of three variables, find an equation of the tangent plane to H at the point $P(3,9,8)$.
[8] b) Use the Implicit Function Theorem to show that near the point P in part a), H can be considered to be the graph of a function f of x and z. Compute the partial derivatives f_{x} and f_{z} and show that the tangent plane found in a) coincides with the graph of the linearization $L(x, z)$ of $f(x, z)$ at $(3,8)$.
[8] c) Use the method of Lagrange multipliers to find the point $Q\left(x_{*}, y_{*}, z_{*}\right)$ on the tangent plane in part a) that is closest to the origin. Determine the distance of between the tangent plane and the origin.
2) Consider the vector field

$$
\vec{G}(x, y, z)=\frac{A x}{x^{2}+y^{2}+1} \vec{\imath}+\left(\frac{2 y}{x^{2}+y^{2}+1}+B z e^{y}\right) \vec{\jmath}+e^{y} \vec{k}
$$

with parameters $A, B \in \mathbb{R}$.
(9) a) Determine the values of A and B for which \vec{G} is conservative.
(8) b) For A and B found in part a), determine a scalar potential for \vec{G}.
(4] c) For A and B found in part a), compute the line integral of \vec{G} along the curve of intersection of the paraboloid $z=x^{2}+y^{2}$ and the plane $y=1$ from the point $P_{0}(0,1,1)$ to the point $P_{1}(1,1,2)$.
3) Consider a fluid with the velocity field

$$
\vec{V}(x, y, z)=\frac{-y}{\sqrt{x^{2}+y^{2}}} \vec{\imath}+\frac{x}{\sqrt{x^{2}+y^{2}}} \vec{\jmath}+\left(x^{2}+y^{2}\right) z \vec{k}
$$

and the surface $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1,-y-3 \leq z \leq y+3\right\}$ with outward normal vectors and positively-oriented boundary ∂S.
(3) a) Describe and sketch the surface S and its boundary ∂S (draw orientation).

Verify Stokes' Theorem by
[8] b) calculating the circulation of \vec{V} along ∂S, i.e. $\int_{\partial S} \vec{V} \cdot d \vec{r}$ and
12 c) computing the flux of $\operatorname{curl} \vec{V}$ across S, that is $\iint_{S} \operatorname{curl} \vec{V} \cdot d \vec{S}$.
4) Consider the vector field

$$
\vec{F}(x, y, z)=x z \vec{\imath}+y z \vec{\jmath}+z^{2} \vec{k}
$$

over the solid region $E=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq 4, z \geq \sqrt{x^{2}+y^{2}}\right\}$ and its outward-oriented boundary surface ∂E.
(2) a) Describe and sketch the region E and the surface ∂E (draw orientation).

Verify the Divergence Theorem by
12 b) computing the flux of \vec{F} across ∂E, that is $\iint_{\partial E} \vec{F} \cdot d \vec{S}$ and
8 c) evaluating the triple integral of $\operatorname{div} \vec{F}$ over E, i.e. $\iiint_{E} \operatorname{div} \vec{F} d V$.

Instructions

- write your name and student number on the envelope and on the top of each sheet!
- use the writing and scratch paper provided, raise your hand if you need more paper
- start each question on a new page
- use a pen with black or blue ink
- do not use any kind of correcting fluid or tape
- any rough work should be crossed through neatly so it can be seen
- this is a closed-book exam, it is not allowed to use the textbook or the lecture notes
- you are allowed to use the formula sheet provided or a simple pocket calculator
- programmable calculators are not allowed, nor the use of electronic devices (tablet, laptop, mobile phone, etc.) to solve the exercises
- your work should be clearly and logically structured
- explain your reasoning using words
- show all your calculations, an answer without any computation will not be rewarded
- you can achieve 100 points (including the 10 bonus points)
- upon completion ${ }^{1}$ place your worksheets in the envelope and submit them at the front desk

[^0]
[^0]: ${ }^{1}$ At the end of the exam or after you finished whichever is sooner.

